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1 Introduction

We propose four basic subroutines which implement selected nondifferentiable optimiza-
tion algorithms. The efficiency of these subroutines is demonstrated in [12], [13], [21], by
comparing them with similar (usually not free) codes known from literature.

The double-precision FORTRAN 77 subroutine PMIN is designed to find a close ap-
proximation to a local minimum of a special minimax objective function

F (x) = max
1≤i≤na

fi(x).

Here x ∈ Rn is a vector of n variables and fi : Rn → R, 1 ≤ i ≤ na, are twice con-
tinuously differentiable functions. Subroutine PMIN is based on the sequential quadratic
programming variable metric method described in [10] (see also [4], [19] for theoretical
foundation).

The double-precision FORTRAN 77 subroutines PBUN, PNEW, PVAR are designed to
find a close approximation to a local minimum of a nonlinear nonsmooth function f(x).
Here x ∈ Rn is a vector of n variables and function f : Rn → R, assumed to be Lipschitz
continuous. We assume that for each x ∈ Rn we can compute f(x), an arbitrary subgra-
dient g(x), i.e. one element of the subdifferential ∂f(x) (called the generalized gradient in
[1]). Subroutine PBUN is based on the proximal bundle method described in [20] (see also
[6], [8], [9], [14], [15], [16] for theoretical foundation), which only uses first-order informa-
tion. Subroutine PNEW is based on the bundle-Newton method described in [12], which
uses second-order information as well, i.e. an n×n symmetric matrix G(x) as a substitute
for the Hessian matrix. Subroutine PVAR is based on variable metric methods described
in [13] and [21] which use variable metric updates for obtaining an approximation of the
Hessian matrix.

All the above subroutines allow us to work with simple bounds and general linear
constraints. Simple bounds are assumed in the form

xi − unbounded , Ix
i = 0,

xl
i ≤ xi , Ix

i = 1,

xi ≤ xu
i , Ix

i = 2,

xl
i ≤ xi ≤ xu

i , Ix
i = 3,

xi = xl
i = xu

i , Ix
i = 5,

where 1 ≤ i ≤ n. General linear constraints are assumed in the form

aT
i x− unbounded , Ic

i = 0,

cli ≤ aT
i x , Ic

i = 1,

aT
i x ≤ cui , Ic

i = 2,

cli ≤ aT
i x ≤ cui , Ic

i = 3,

aT
i x = cli = cui , Ic

i = 5,

where 1 ≤ i ≤ nc and nc is the number of general linear constraints (Ix, Ic correspond to
arays IX, IC in the subroutines).

To simplify the user’s work, additional easy-to-use subroutines are added. These sub-
routines call general subroutines PMIN, PBUN, PNEW, PVAR:
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PMINU - unconstrained minimax optimization.
PMINS - minimax optimization with simple bounds.
PMINL - minimax optimization with simple bounds and general linear constraints.
PBUNU, PNEWU, PVARU - unconstrained nonsmooth optimization.
PBUNS, PNEWS, PVARS - nonsmooth optimization with simple bounds.
PBUNL, PNEWL, PVARL - nonsmooth optimization with simple bounds and

general linear constraints.

Each subroutine contains a description of formal parameters and extensive comments.
Moreover, text files PMIN.TXT, PBUN.TXT, PNEW.TXT, PVAR.TXT are added, which con-
tain a detailed description of all important subroutines (including indications of re-
quired storage). Finally, test programs TMINU, TMINL, TBUNU, TBUNL, TNEWU, TNEWL,

TVARU, TVARL are included, which contain sets of test problems. These test programs
serve as examples for using the subroutines, verify their correctness and demonstrate
their efficiency.

2 Sequential quadratic programming methods for nonlinear mini-

max optimization

To simplify the description of the method, we consider the particular linearly constrained
problem written in the following form

x� = arg min
x∈LC

{max
i∈M1

fi(x)}, (1)

where
LC = {x ∈ Rn : aT

i x ≤ bi, i ∈M2}
with M1 ∩M2 = ∅ and M1 ∪M2 = M = {1, . . . ,m} (LC is a feasible set determined by
linear constraints). It is clear that the application of the method described below to the
problem with general linear constraints stated in Section 1 is straightforward, but this
requires considering each type of constraints separately as is realized in subroutine PMIN.

2.1 Variable metric method for nonlinear minimax optimization

If we introduce a new variable u, then the problem (1) can be reformulated as a nonlinear
programming problem

(x�, u�) = arg min
(x,u)∈Nn+1

{u}, (2)

where
Nn+1 = {(x, u) ∈ Rn+1 : fi(x) ≤ eiu, i ∈M}

with ei = 1 for i ∈ M1 and ei = 0, fi(x) = aT
i x − bi for i ∈ M2. This nonlinear

programming problem can be solved by a sequential quadratic programming method
that uses a quadratic approximation of the Lagrangian and a linear approximation of
constraints in each iteration. Let xk ∈ Rn be a current approximation to the minimizer
x�. Then the resulting quadratic programming subproblem has the form

(dk, uk) = arg min
(d,u)∈Ln+1

k

{
1

2
dTGkd+ u

}
, (3)
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where Gk is an approximation of the Hessian matrix of the Lagrangian and

Ln+1
k = {(d, u) ∈ Rn+1 : fk

i + (ak
i )

Td ≤ eiu, i ∈M}
with fk

i = fi(x
k), ak

i = ∇fi(x
k) for i ∈ M1 and fk

i = aT
i x

k − bi, a
k
i = ai for i ∈ M2. The

solution of the quadratic programming subproblem (3) has to satisfy the Karush-Kuhn-
Tucker conditions

dk = −Hkgk,

eTλk = 1,

λk ≥ 0,

μk ≥ 0,

(μk)Tλk = 0,

where λk is the vector of Lagrange multipliers, Hk = (Gk)−1, Ak = [ak
1, . . . , a

k
m], e =

[e1, . . . , em]T , fk = [fk
1 , . . . , f

k
m]T , gk = Akλk is the gradient of the Lagrangian function

and μk = uke−fk−(Ak)Tdk is the vector of constraint violations. Note that if gk = 0, then
we obtain the Karush-Kuhn-Tucker conditions for the nonlinear programming problem
(2) exactly so that the minimax problem (1) is solved if each fi is convex. Therefore, the
condition ‖gk‖∞ ≤ TOLG is used in subroutine PMIN as the basic stopping criterion (when
it is fulfilled, then ITERM = 4).

The direction vector dk ∈ Rn obtained as the solution to the quadratic programming
subproblem (3) is used for the definition of the new approximation xk+1 to the minimizer
x� by the formula

xk+1 = xk + tkdk,

where 0 < tk ≤ 1 is a steplength, which is chosen in such a way that

F (xk + tkdk) − F (xk) ≤ mLt
k(dk)Tgk,

where 0 < mL < 1/2 is a tolerance for function decrease in the line search (value mL =
10−4 is used in subroutine PMIN). The steplength tk is chosen iteratively by the bisection.

Having the new approximation xk+1 to the minimum x�, we can compute the new
matrix Ak+1 = [ak+1

1 , . . . , ak+1
m ], where ak+1

i = ∇fi(x
k+1) for i ∈ M1 and ak+1

i = ai for
i ∈ M2. If we denote sk = xk+1 − xk and zk = Ak+1λk − Akλk = Ak+1λk − gk, then the
BFGS method [2] consists in the following update

Gk+1 =
1

γk

(
Gk + γk z

k(zk)T

(sk)T zk
− Gksk(Gksk)T

(sk)TGksk

)
=

1

γk

(
Gk + γk z

k(zk)T

(sk)T zk
+ tk

gk(gk)T

(sk)Tgk

)
,

where γk > 0 is a self-scaling parameter. The special value γk = (sk)TGksk/(sk)T zk =
−tk(sk)Tgk/(sk)T zk is used in the first iteration (or in the iteration after a restart). This
special value is also used in the other iterations whenever it lies in the interval [0.5, 4.0].
The BFGS method requires condition (sk)T zk > 0 to be satisfied, which guarantees a
positive definiteness of matrix Gk+1. Unfortunately, this condition does not hold in the
minimax optimization automatically. If (sk)T zk ≤ 0 and MEC = 1, we set Gk+1 = Gk.
If (sk)T zk ≤ 0 and MEC = 2, we use the Powell correction [18] (MEC is the parameter of
subroutine PMIN). At the first iteration, we set H1 = I (the unit matrix). This setting is
also performed if −(dk)Tgk ≤ ε‖dk‖‖gk‖, where ε is a restart tolerance (value ε = 10−8 is
used in the subroutine PMIN).

3



2.2 Dual range space method for a special quadratic programming subprob-
lem

Consider a quadratic programming problem in which we seek a pair (d�, u�) ∈ Rn+1 in
such a way that

(d�, u�) = arg min
(d,u)∈Ln+1

φ(s, u), (4)

where

φ(d, u) =
1

2
dTGd+ u

and
Ln+1 = {(d, u) ∈ Rn+1 : fi + aT

i d ≤ eiu, i ∈M}
(see (3)). The assumption that the matrix G is positive definite implies that problem
(4) is convex and we can apply duality theory to obtain a dual quadratic programming
problem which consists in seeking a vector λ� ∈ Rm (vector of Lagrange multipliers of
(4)) so that

ψ(λ�) = min
λ∈LD

ψ(λ), (5)

where

ψ(λ) =
1

2
λTATHAλ− fTλ

and
LD = {λ ∈ Rm : eTλ = 1, λ ≥ 0}.

Here H = G−1, A = [a1, . . . , am], f = [f1, . . . , fm]T , e = [e1, . . . , em]T . The solution of (4)
can be obtained from the solution of (5) by formulas

d� = −HAλ� (6)

and
u� = fTλ� − (λ�)TATHAλ�. (7)

The solution λ� of (5) is the optimal Lagrange multiplier vector of (4). Since problem (5)
is convex, λ� is its solution if and only if the Karush-Kuhn-Tucker conditions are valid,
i.e. if and only if

eTλ� = 1, λ� ≥ 0 (8)

and there exists a scalar u� such that

μ� = ATHAλ� − f + u�e ≥ 0, (μ�)Tλ� = 0. (9)

Vector μ� is the Lagrange multiplier vector of problem (5). Conditions (6) and (9) imply
that u� in (9) is identical with u� in (7). This in turn implies that μ� is, at the same time,
the vector of constraint values of problem (4).

Consider any subset I ⊂ M and denote the vectors of elements λi, fi, ei, i ∈ I by λ,
f , e, respectively. Similarly, let A be the matrix of columns ai, i ∈ I. To simplify the
investigation of the dual range space method, we denote

Ã =

[
A

−eT

]
, H̃ =

[
H 0
0 1

]

4



and assume that the subset I ⊂ M was chosen in such a way that the columns of Ã are
linearly independent.

If I = I∗ were the set of active constraints at the solution of problem (4), then we
could compute the dual variables u� and λ� from (8)-(9). Unfortunately, this set is not
known a priory. Therefore, we start with the set I = {k}, where k ∈ M1 is arbitrary.
Then u = fk − aT

kHak and λ = [1]. Suppose that I ⊂ M is a current subset and u,
λ are corresponding dual variables. Then we can proceed in the following way. First
we compute the direction vector d = −HAλ and the value of the most violated primal
constraint

μk = uek − fk − aT
k d = min

i∈M\I
{uei − fi − aT

i d}.

If μk ≥ 0 then the set of active constraints has been detected and the solutions of (4)
and (5) have been found. Otherwise, we set λk = 0 and compute the primal and dual
steplengths

tPk = − μk

βkγk + δk

tDk =
λj

qkj + γkpj

= min
i∈I

λi

qki + γkpi

,

where p = (ÃT H̃Ã)−1e, qk = (ÃT H̃Ã)−1ÃT H̃ãk, βk = ek − eT qk, γk = βk/p
T e, δk =

ãT
k (H̃ − H̃Ã(ÃT H̃Ã)−1ÃT H̃)ãk (with ãk = [ak,−ek]

T ) and I = {i ∈ I : qki + γkpi > 0} .
If βkγk + δk = 0, then we set tPk = ∞. If I = ∅, we set tDk = ∞. If simultaneously tPk = ∞
and tDk = ∞, the problem has no feasible solution. Otherwise we set tk = min{tPk , tDk }
and compute u := u+ tkγk, λ := λ− tk(qk + γkp), λk := λk + tk, μk := (1 − tk/t

P
k )μk.

If tPk ≤ tDk , then the primal step is realized, i.e. we set I := I ∪ {k}, λ := [λT , λk]
T ,

e := [eT , ek]
T , A := [A, ak], Ã := [Ã, ãk], recompute d = −HAλ and determine a new

value of the most violated primal constraint and a new index k.
If tPk > tDk , then the dual step is realized, i.e. we set I := I\{j}, λ := λ(j), e := e(j),

A := A(j), Ã := Ã(j), where the upper index in parentheses denotes an element or column
which is deleted. Now, two cases can occur. If I ∩M1 
= ∅, we recompute the primal
and dual steplengths and repeat the process with the same index k. If I ∩M1 = ∅, then
we compute u := u − μk, set I := I ∪ {k}, λ := [λT , λk]

T , e := [eT , ek]
T , A := [A, ak],

Ã := [Ã, ãk], recompute d = −HAλ and determine the new value of the most violated
primal constraint and the new index k.

In [11] it has been proved that the above dual range space method finds solutions of
quadratic programming problems (4) and (5) after a finite number of steps. This method
is also used for solving quadratic programming subproblems in the bundle type methods
described in the next section.

3 Bundle type methods for nonsmooth optimization

To simplify the description of the method, we consider the particular linearly constrained
problem written in the following form

x� = arg min
x∈LC

{f(x)}, (10)
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where
LC = {x ∈ Rn : aT

j x ≤ bj, j ∈M2}.
It is clear that the application of the methods described below to the problem with general
linear constraints stated in Section 1 is straightforward, but this requires considering each
type of constraint separately as is realized in subroutines PBUN and PNEW.

The idea behind the bundle methods is that they use a bundle of information obtained
at points yj ∈ LC , j ∈ Jk, where Jk ⊂ {1, . . . , k}. The bundle of information serves for
building a simple nonsmooth model which is utilized for direction determination. Having
the direction vector d ∈ Rn, a special line search procedure which produces either serious
or short or null steps is used in such a way that

xk+1 = xk + tkLd
k, yk+1 = xk + tkRd

k, (11)

where 0 ≤ tkL ≤ tkR ≤ 1. Serious steps, characterized by the relation tkR = tkL, i.e.
yk+1 = xk+1, are typical for classical optimization methods. For nonsmooth minimization,
special null steps are essential. Both short and null steps with tkR 
= tkL, i.e., yk+1 
= xk+1

obtain bundle information from a larger domain which can include points lying on the
opposite sides of a possible discontinuity of the objective gradient. The difference between
the bundle methods described below consists in the choice of a nonsmooth model. The
proximal bundle method uses a piecewise linear function with a special quadratic penalty
term while the bundle-Newton method uses a piecewise quadratic function.

Notice that bundle methods can only handle locally Lipschitz, weakly upper semis-
mooth objectives.

3.1 The proximal bundle method

The piecewise linear function used in the proximal bundle method is based on the cutting-
plane model

f̂k(x) = max
j∈Jk

{f(yj) + (gj)T (x− yj)} = max
j∈Jk

{f(xk) + (gj)T (x− xk) − βk
j },

where gj ∈ ∂f(yj), j ∈ Jk, are subgradients and βk
j = f(xk) − f(yj) − (gj)T (xk − yj),

j ∈ Jk, are linearization errors. If the objective function were convex, then the cutting
plane model would underestimate it, i.e. f̂k(x) ≤ f(x) for all x ∈ LC . This is not valid in
general since βk

j may be negative in a nonconvex case. Therefore, the linearization error
βk

j is replaced by the so-called subgradient locality measure

αk
j = max{|βk

j |, γ(sk
j )

2}, (12)

where

sk
j = ‖xj − yj‖ +

k−1∑
i=j

‖xi+1 − xi‖

is the distance measure approximating ‖xk − yj‖ without the need to store the bundle
point yj, γ ≥ 0 is the distance measure parameter (parameter ETA of subroutine PBUN).
We can set γ = 0 in the convex case. Obviously, now minLC

f̂k ≤ f(xk) from αk
j ≥ 0 and
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xk ∈ LC . In order to respect the above considerations, we can define the following local
subproblem for the direction determination

dk = arg min
xk+d∈LC

{f̂k(x
k + d) +

1

2
σkdTd},

where the regularizing quadratic penalty term (1/2)σkdTd is added to guarantee the ex-
istence of the solution dk and to keep the approximation local enough.

The choice of weights σk is very important. Weights which are too large imply a small
‖dk‖, almost all serious steps and a slow descent. Weights which are too small imply a
large ‖dk‖ and many null steps. The weight updating method depends on the parameter
MET of subroutine PBUN:

• Quadratic interpolation (MET = 1): The idea is based on a simplified case n = 1 and
f quadratic, where σk estimates the second-order derivative of f (see [5]). By letting
σk+1 = min{max{σk+1

int , σ
k/10, σmin}, 1/σmin, 10σk}, where σmin is a small positive

constant, we safeguard the value σk+1
int obtained by quadratic interpolation (see [20]

for details).

• Minimum localization (MET = 2): The quadratic interpolation is not suitable for
f of the polyhedral type. Since the second-order derivative of the single-variable
quadratic function ax2 + bx+ c, b fixed, is inversely proportional to the coordinate
of the minimum, we set σk+1

loc = σk/xmin, where xmin is a computed estimate of the
minimum of f in the direction dk. We again safeguard σk+1

loc similarly as σk+1
int .

• Quasi-Newton condition (MET = 3): If we approximate the Hessian matrix of f
by σk+1

con · I, then the quasi-Newton condition with aggregate subgradient gk+1
0 (see

below) can be written in the form σk+1
con ‖dk‖2 = (dk)T (gk+1

0 −gk
0). We safeguard σk+1

con

by setting σk+1 = min{max{σk+1
con , 10−3}, 103}.

The above local subproblem is still a nonsmooth optimization problem. However, due
to the piecewise linear nature it can be rewritten as a (smooth) quadratic programming
subproblem

(dk, uk) = arg min
(d,u)∈Lk

{u+
1

2
σkdTd}, (13)

where
Lk = {(d, u) : −αk

j + (gj)Td ≤ eju, j ∈ Jk ∪M2}
with αk

j given by (12), gj ∈ ∂f(yj), ej = 1 for j ∈ Jk and αk
j = bj − aT

j x, g
j = aj, ej = 0

for j ∈M2 (we suppose that Jk ∩M2 = ∅, which is easily ensured in our implementation).
This quadratic programming subproblem can be efficiently solved by the dual range space
method described in Section 2.2.

The above derivation was slightly simplified since the aggregation of constraints was
not included. In fact we add the element {0} to Jk, letting

f̃k−1
0 =

∑
j∈Jk−1\{0}

λk−1
j

(
f(yj) + (gj)T (xk−1 − yj)

)
+ λk−1

0 fk−1
0 ,

s̃k−1
0 =

∑
j∈Jk−1

λk−1
j sk−1

j ,
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fk
0 = f̃k−1

0 + (gk
0)

T (xk − xk−1),

sk
0 = s̃k−1

0 + |xk − xk−1|,
gk
0 =

∑
j∈Jk−1\{0}

λk−1
j gj + λk−1

0 gk−1
0 ,

αk
0 = max{|f(xk) − fk

0 |, γ(sk
0)

2}

and e0 = 1, f 1
0 = f(x1), s1

0 = 0, g1
0 = g1. The values λk−1

j , j ∈ Jk−1 are Lagrange
multipliers of the quadratic programming subproblem from the previous iteration.

Having the pair (dk, uk) determined as a solution to the quadratic programming sub-
problem (13), we can obtain points (11) using a suitable line search (such a line search
is guaranteed to be finite only in the weakly upper semismooth case). The line search
consists in the initial setting tkL = 0 and the construction of the sequence tki > 0, i ∈ N
(N is the set of natural numbers), tk1 = 1, using a cubic interpolation method and a
suitable backtracking. Let 0 < mL < 1/2, mL < mR < 1 be line search tolerances (values
mL = 10−2 and mR = 1/2 are used in subroutines PBUN and PNEW) and 0 < t < 1. If

f(xk + tki d
k) ≤ f(xk) +mLt

k
i v

k, (14)

where vk = uk +
∑

j∈Jk
λk

jα
k
j − α̃k

0, α̃
k
0 = max{|f̃k

0 − f(xk)|, γ(s̃k
0)

2}, then we set tkL = tki .

If tkL ≥ t, then we set tkR = tkL and terminate the line search (serious step). Otherwise, if

−αk+1
k+1 + (gk+1)Tdk ≥ mRv

k, (15)

where

αk+1
k+1 = max{|βk+1

k+1 |, γ(sk+1
k+1)

2},
βk+1

k+1 = f(xk + tkLd
k) − f(xk + tki d

k) − (tkL − tki )(g
k+1)Tdk,

sk+1
k+1 = ‖(tkL − tki )d

k‖
and gk+1 ∈ ∂f(xk + tki d

k), then we set tkR = tki and terminate the line search. Otherwise,
the line search continues with i increased by 1.

The iteration is terminated if wk ≤ TOLG, where wk = (1/2)|gk
0 |2 + α̃k

0 (TOLG is a
parameter of subroutines PBUN and PNEW).

3.2 The bundle-Newton method

The bundle-Newton method is based on the following piecewise quadratic model

f̃k(x) = max
j∈Jk

{f(yj) + (gj)T (x− yj) +
1

2
ρj(x− yj)TGj(x− yj)}

= max
j∈Jk

{f(xk) + (gk
j )T (x− xk) +

1

2
ρj(x− xk)TGj(x− xk) − βk

j },

where Gj are symmetric positive definite matrices, ρj ∈ [0, 1] are values defined below,
gk

j = gj + ρjGj(xk − yj) and

βk
j = f(xk) − f(yj) − (gj)T (xk − yj) − 1

2
ρj(xk − yj)TGj(xk − yj)

8



for j ∈ Jk. Note that even in the convex case βk
j might be negative. Therefore, we replace

the error βk
j by the locality measure (12) again so that minLC

f̃k ≤ f(xk). But γ > 0
is now required for the distance measure parameter (parameter ETA of the subroutines
PNEW). The local subproblem for direction determination has the form

dk = arg min
xk+d∈LC

{f̃k(x
k + d)}.

This local subproblem is in fact a nonlinear minimax problem which can be solved approx-
imately by the Lagrange-Newton method (see [2]). Thus, we solve the following (smooth)
quadratic programming subproblem

(dk, vk) = arg min
(d,v)∈Lk

{v +
1

2
dTW kd}, (16)

where W k =
∑

j∈Jk−1
λk−1

j ρjGj and λk−1
j , j ∈ Jk−1 are Lagrange multipliers of the

quadratic programming subproblem from the previous iteration and

Lk = {(d, v) : −αk
j + (gk

j )Td ≤ ejv, j ∈ Jk ∪M2}

with αk
j given by (12), gk

j = gj + ρjGj(xk − yj), ej = 1 for j ∈ Jk and αk
j = bj − aT

j x,
gk

j = aj, ej = 0 for j ∈ M2. This quadratic programming subproblem can be efficiently
solved by the dual range space method described in Section 2.2.

The above derivation is not full since the aggregation of constraints is not included. The
aggregation of constraints is based on the same principle that was used in the proximal
bundle method. We refer to [12] for details.

Having the pair (dk, vk) determined as a solution to the quadratic programming sub-
problem (16), we can obtain the points (11) using a line search which is in fact the same
as in the proximal bundle method. Again, conditions (14) and (15) are used, where

αk+1
k+1 = max{|βk+1

k+1 |, γ(sk+1
k+1)

2},
βk+1

k+1 = f(xk + tkLd
k) − f(xk + tki d

k) − (tkL − tki )(g
k+1
k+1)

Tdk

−(ρk+1/2)(tkL − tki )
2(dk)TG(xk + tki d

k)dk,

sk+1
k+1 = ‖(tkL − tki )d

k‖

and gk+1 is replaced by gk+1
k+1 = g(xk+tki d

k)+ρk+1(tkL−tki )G(xk+tki d
k)dk. Here g(xk+tki d

k) ∈
∂f(xk + tki d

k) and G(xk + tki d
k) is a second-order matrix computed at the point xk + tki d

k.
The stopping criterion is in fact the same as in the proximal bundle method.

The damping parameters ρj, j ∈ Jk, have unit values on most iterations and are zeroed
if many short or null steps occur, since a quadratic model is inefficient in this case.

4 Variable metric methods for nonsmooth optimization

The main deficiency of standard bundle methods is the necessity of solving a rather ex-
tensive QP subproblem in every iteration, which is a time-consuming procedure. On the
other hand, standard variable metric methods are relatively robust and efficient when they
are applied to nonsmooth convex problems (see e.g. [7]). This fact indicates that spe-
cial nonsmooth modifications of variable metric methods, not containing time-consuming
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operations, could be developed. Roughly speaking, three basic ideas of bundle methods
can be applied to variable metric methods for improving their efficiency and robustness.
The essential feature is the utilization of null steps for obtaining sufficient information
about a nondifferentiable function. Furthermore, a simple aggregation of subgradients
and application of modified linearization errors are used that guarantee convergence of
subgradients to zero and allow us to evaluate a termination criterion.

4.1 Globally convergent variable metric methods

Globally convergent variable metric methods based on these ideas are proposed in [13],
[21]. These methods, which utilize a simple three-term aggregation at null steps can be
described by the following simplified procedure (we consider the unconstrained case in
this subsection).

Starting with x1, f(x1), g1 ∈ ∂f(x1), H1 positive definite (e.g. H1 = I), g̃1 = g1,
α̃1 = 0, the k-th iteration begins by testing whether matrix Hk is sufficiently positive
definite (if not, correction 
kI, 
k > 0 is added to Hk). Then the determination of the
direction vector dk = −Hkg̃k and the computation of the stationarity measure wk =
(g̃k)THkg̃k + 2α̃k follow. If wk ≤ TOLG (TOLG is a parameter of subroutine PVAR), then
xk is a good approximation of a stationary point. Otherwise, a steplength tk is selected,
e.g. using a piecewise linear approximation (moreover, in the nonconvex case [21], a
special line-search procedure is used), together with yk+1 = xk + tkdk, f(yk+1) and gk+1 ∈
∂f(yk+1). Let 0 < mL < 1/2 be a line search tolerance (we use the value mL = 10−4 in
subroutine PVAR). If

f(yk+1) − f(xk) ≤ −mLt
kwk (17)

(descent step), then we set xk+1 = yk+1, g̃k+1 = gk+1, compute sk = xk+1 − xk, zk =
gk+1 − gm, where m is the index of the iteration after the latest serious step, determine
Hk+1 from Hk by the BFGS update [2]

Hk+1 = Hk +

(
1 +

(zk)THkzk

(zk)T sk

)
sk(sk)T

(zk)T sk
− Hkzk(sk)T + sk(zk)THk

(zk)T sk

finishing the k-th iteration. If (17) is not satisfied (null step), then we set xk+1 = xk,
compute αk+1 = (f(xk) − f(yk+1))/tk + (dk)Tgk+1 in the convex case [13] or αk+1 =
max[(f(xk)−f(yk+1))+tk(dk)Tgk+1, γ|tkdk|2], γ > 0, in the nonconvex case [21], determine
multipliers λk

j ≥ 0, j ∈ {1, 2, 3}, λk
1 + λk

2 + λk
3 = 1, which minimize the function

ϕ(λ1, λ2, λ3) = |λ1W
kgm + λ2W

kgk+1 + λ3W
kg̃k|2 + 2[λ2α

k+1 + λ3α̃
k],

where W k = (Hk)1/2 and set

g̃k+1 = λk
1g

m + λk
2g

k+1 + λk
3 g̃

k, α̃k+1 = λk
2α

k+1 + λk
3α̃

k.

After this simple aggregation we compute sk = yk+1 − xk, zk = gk+1 − gm. If (g̃k)T (sk −
Hkzk) > 0, then we construct Hk+1 from Hk by the SR1 update [2]

Hk+1 = Hk +
(sk −Hkzk)(sk −Hkzk)T

(zk)T (sk −Hkzk)

finishing the k-th iteration.
More details concerning these methods are given in [13] and [21].
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4.2 Active set strategy for linear constraints

Since variable metric methods do not use quadratic programing subalgorithms, which
allow us to handle linear constraints automatically, we have to apply the active set strategy
to these methods directly (see [17]). To simplify the description of active set strategy, we
again consider the particular problem (10). Suppose xk ∈ Rn is a feasible point so that
aT

i x
k = bi, i ∈ Ik and aT

i x
k < bi, i ∈ M2\Ik, where Ik ⊂ M2 is a set of indices of active

constraints. Then we can restrict to minimization on the manifold

Lk = {x : (Ak)Tx = bk} = {x : xk + Zkŝ} (18)

where Ak = [ai]i∈Ik
, (bk)T = [bi]i∈Ik

, (Ak)TZk = 0, (Zk)TZk = I and Range([Ak, Zk]) =
Rn. Considering this reduced problem, we can easily see that the reduced subgradient
and the reduced Hessian matrix are given by ĝ(ŝ) = (Zk)Tg(x) and Ĝ(ŝ) = (Zk)TG(x)Zk,
respectively. If we have an approximation Ĥk of [(Zk)TG(xk)Zk]−1, we can improve it by
a variable metric update where the vectors zk and sk are replaced by the reduced vectors
ẑk = (Zk)T zk and ŝk = tkd̂k = −tkĤkĝk.

If the solution to the problem (10) lies on Lk, we can find it by using methods described
in Section 4.1, remembering that all vectors have to be replaced by corresponding reduced
vectors. If the solution to the problem (10) does not lie on Lk, the active constraints have
to be changed subsequently. The test for constraint deletion at iteration k employs the
Lagrange multiplier vector λk = ((Ak)TAk)−1(Ak)T ĝk. Let eT

ik
λk = mini∈Ik

eT
i λ

k. Then ik
is deleted from Ik if eT

ik
λk ≤ −c‖ĝk‖, where c > 0 (value c = 0.8 is used in subroutine

PVAR). On the other hand, constraint addition is performed at the end of the iteration.
For this purpose, the upper bound

tkmax = min
i∈M2\Ik

aT
i sk>0

bi − aT
i x

k

aT
i s

k

is determined and the suitable stepsize tk ≤ tkmax is found. After the variable metric
update is carried out, all indices i ∈ M2\Ik satisfying |bi − aT

i x
k+1| ≤ 10−8 are added to

Ik.
If the set of active constraints is changed, then the representation of the corresponding

linear manifold has to be updated, see e.g. [3]. To simplify the notation, we omit index k
in the rest of this section and denote by + and − quantities after addition and deletion of
an active constraint, respectively. Then the current (active) linear manifold is represented
by the set of constraint indices I, the matrix of constraint normals A, the upper triangular
matrix R satisfying RTR = ATA and the orthonormal basis Z.

After addition of the constraint normal a+ to matrix A, we obtain

R+ =

[
R r+
0 ρ+

]
,

where RT r+ = ATa+ and ρ+ = ‖ZTa+‖ =
√
aT

+a+ − rT
+r+. Furthermore, let P be

the orthogonal matrix (we use a product of the Givens rotation matrices) such that
P TZTa+ = ‖ZTa+‖e1, where e1 is the first column of the unit matrix. Then Z+ is
obtained from ZP by deletion of its first column and

Ĥ+ = Ĥ∗ − ĥĥT

η̂
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where

P T ĤP =

[
Ĥ∗ ĥ

ĥT η̂

]
.

After deletion of the constraint normal a from matrix A, let M be the permutation
matrix which interchanges column a with the last column of A so that AM = [A− a] and
the matrix RM is upper Hessenberg. Let Q be the orthogonal matrix (product of the
Givens rotation matrices) which anihilates the subdiagonal elements of RM so that

QRM =

[
R− r
0 ρ

]
.

Then R− is a part of the upper triangular matrix QRM . Furthermore, Z− = [Z z−] where

z− = AM

[
R− r
0 ρ

]−1 [
0
1

]
.

Since the second-order information along the direction z− is not contained in matrix Ĥ,
we set

Ĥ− =

[
Ĥ 0
0 1

]
.

5 Description of subroutines

In this section we describe easy-to-use subroutines which can be called from the user’s
program. In the description of formal parameters we introduce a type of the argument
denoted by two letters. The first letter is either I for integer arguments or R for double
precision real arguments. The second letter specifies whether the argument must have
a value defined on the entry to the subroutine (I), whether it is a value which will be
returned (O), or both (U), or whether it is an auxiliary value (A). Notice that the input type
arguments can be changed on the output under some circumstances, especially if improper
input values were given. Besides the formal parameters, we use a COMMON /STAT/ block
containing statistical information. This block, used in each subroutine, has the following
form:

COMMON /STAT/ NDECF,NRES,NRED,NREM,NADD,NIT,NFV,NFG,NFH

Its elements have the following meanings:
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Element Type Significance

NDECF IO Number of matrix decompositions.

NRES IO Number of restarts.

NRED IO Number of reductions.

NREM IO Number of constraint deletions during the QP solutions.

NADD IO Number of constraint additions during the QP solutions.

NIT IO Number of iterations.

NFV IO Number of function evaluations.

NFG IO Number of gradient evaluations.

NFH IO Number of Hessian evaluations.

Easy-to-use subroutines are called by the following statements:

CALL PMINU(NF,NA,X,AF,IPAR,RPAR,F,GMAX,IEXT,IPRNT,ITERM)
CALL PMINS(NF,NA,NB,X,IX,XL,XU,AF,IPAR,RPAR,F,GMAX,IEXT,IPRNT,ITERM)
CALL PMINL(NF,NA,NB,NC,X,IX,XL,XU,CF,IC,CL,CU,CG,AF,IPAR,RPAR,F,
& GMAX,IEXT,IPRNT,ITERM)
CALL PBUNU(NF,NA,X,IPAR,RPAR,F,GMAX,IPRNT,ITERM)
CALL PBUNS(NF,NA,NB,X,IX,XL,XU,IPAR,RPAR,F,GMAX,IPRNT,ITERM)
CALL PBUNL(NF,NA,NB,NC,X,IX,XL,XU,CF,IC,CL,CU,CG,IPAR,RPAR,F,
& GMAX,IPRNT,ITERM)
CALL PNEWU(NF,NA,X,IPAR,RPAR,F,GMAX,IHES,IPRNT,ITERM)
CALL PNEWS(NF,NA,NB,X,IX,XL,XU,IPAR,RPAR,F,GMAX,IHES,IPRNT,ITERM)
CALL PNEWL(NF,NA,NB,NC,X,IX,XL,XU,CF,IC,CL,CU,CG,IPAR,RPAR,F,
& GMAX,IHES,IPRNT,ITERM)
CALL PVARU(NF,NA,X,IPAR,RPAR,F,GMAX,IPRNT,ITERM)
CALL PVARS(NF,NA,NB,X,IX,XL,XU,IPAR,RPAR,F,GMAX,IPRNT,ITERM)
CALL PVARL(NF,NA,NB,NC,X,IX,XL,XU,CF,IC,CL,CU,CG,IPAR,RPAR,F,
& GMAX,IPRNT,ITERM)

Their arguments have the following meanings:

Argument Type Significance

NF II Number of variables of the objective function.

NA II Number of functions in the minimax criterion for subroutines PMINU,
PMINS, PMINL or the maximum bundle dimension for the other subrou-
tines (choice NA = 0 causes that the default value NA =NF+3 will be taken
in a later case)

NB II Specification whether the simple bounds are suppressed (NB = 0) or ac-
cepted (NB > 0).

NC II Number of linear constraints; if NC = 0 the linear constraints are suppressed.

X(NF) RU On input, vector with the initial estimate to the solution. On output, the
approximation to the minimum.

IX(NF) II Vector containing the simple bound types (significant only if NB > 0):
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IX(I) = 0: the variable X(I) is unbounded,
IX(I) = 1: the lower bound X(I) ≥ XL(I),
IX(I) = 2: the upper bound X(I) ≤ XU(I),
IX(I) = 3: the two-side bound XL(I) ≤ X(I) ≤ XU(I),
IX(I) = 5: the variable X(I) is fixed (given by its initial estimate).

XL(NF) RI Vector with lower bounds for variables (significant only if NB > 0).

XU(NF) RI Vector with upper bounds for variables (significant only if NB > 0).

CF(NC) RA Vector which contains values of constraint functions (significant only if
NC > 0).

IC(NC) II INTEGER vector which contains constraint types (significant only if NC >
0):
IC(K) = 0: the constraint CF(K) is not used,
IC(K) = 1: the lower constraint CF(K) ≥ CL(K),
IC(K) = 2: the upper constraint CF(K) ≤ CU(K),
IC(K) = 3: the two-side constraint CL(K) ≤ CF(K) ≤ CU(K),
IC(K) = 5: the equality constraint CF(K) = CL(K).

CL(NC) RI Vector with lower bounds for constraint functions (significant only if NC >
0).

CU(NC) RI Vector with upper bounds for constraint functions (significant only if NC >
0).

CG(NF*NC) RI Matrix whose columns are normals of the linear constraints (significant only
if NC > 0).

AF(NA) RO Vector which contains the values of functions in the minimax criterion.

IPAR(5) IA Integer parameters (see Table 5.1).

RPAR(6) RA Real parameters (see Table 5.1).

F RO Value of the objective function at the solution X.

GMAX RO value indicating the termination (‖gk‖∞ in PMIN or wk in PBUN, PNEW and
PVAR).

IEXT II Variable that specifies the minimax criterion:

IEXT < 0: maximum of function values,
IEXT = 0: maximum of absolute function values (l∞ approximation),

IHES II Variable that specifies a way for computing second derivatives:

IHES = 0: numerical computation,
IHES = 1: analytical computation by the user supplied subroutine HES.

IPRNT II Print specification:

IPRNT = 0: print is suppressed,
IPRNT = 1: basic print of final results,
IPRNT = −1: extended print of final results,
IPRNT = 2: basic print of intermediate and final results,
IPRNT = −2: extended print of intermediate and final results,

ITERM IO Variable that indicates the cause of termination:

ITERM = 1: if |x−xold| was less than or equal to TOLX in MTESX subsequent
iterations,
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ITERM = 2: if |F − Fold| was less than or equal to TOLF in MTESF subse-
quent iterations,

ITERM = 3: if F is less than or equal to TOLB,
ITERM = 4: if GMAX is less than or equal to TOLG,
ITERM = 11: if NFV exceeded MFV,
ITERM = 12: if NIT exceeded MIT,
ITERM < 0: if the method failed (ITERM = −6 if the required precision

was not achieved, ITERM = −10 if two consecutive restarts
were required, ITERM = −12 if the quadratic programming
subroutine failed).

The integer and real parameters are listed in the following table:

Parameter PMIN PBUN PNEW PVAR
IPAR(1) MIT MIT MIT MIT
IPAR(2) MFV MFV MFV MFV
IPAR(3) MEC MET - MEX
IPAR(4) - MTESX MTESX MTESX
IPAR(5) - MTESF MTESF MTESF
RPAR(1) XMAX XMAX XMAX XMAX
RPAR(2) TOLX TOLX TOLX TOLX
RPAR(3) TOLF TOLF TOLF TOLF
RPAR(4) TOLB TOLB TOLB TOLB
RPAR(5) TOLG TOLG TOLG TOLG
RPAR(6) - ETA ETA ETA

Table 5.2 - Integer and real parameters

Integer and real parameters have the following meanings:

Argument Type Significance

MIT II Maximum number of iterations; the choice MIT = 0 causes that the default
value 200 will be taken.

MFV II Maximum number of function evaluations; the choice MFV = 0 causes that
the default value 500 will be taken.

MEC II Variable that specifies correction of variable metric updates if negative cur-
vature occurs:
MEC = 1: correction is suppressed,
MEC = 2: Powell’s correction is used.
The choice MEC = 0 causes that the default value MEC = 1 will be taken.

MET II Variable that specifies the weight updating method:

MET = 1: quadratic interpolation,
MET = 2: local minimization,
MET = 3: quasi-Newton condition.
The choice MET = 0 causes that the default value MET = 1 will be taken.

MEX II Variable that specifies version of nonsmooth variable metric method:

MEX = 1: convex version is used,
MEX = 2: nonconvex version is used.
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The choice MEX = 0 causes that the default value MEX = 2 will be taken.

MTESX II Maximum number of iterations with changes of the coordinate vector X
smaller than TOLX; the choice MTESX = 0 causes that the default value 20
will be taken.

MTESF II Maximum number of iterations with changes of function values smaller than
TOLF; the choice MTESF = 0 causes that the default value 2 will be taken.

XMAX RI Maximum stepsize; the choice XMAX = 0 causes that the default value 103

will be taken.
TOLX RI Tolerance for the change of the coordinate vector X; the choice TOLX = 0

causes that the default value 10−16 will be taken.
TOLF RI Tolerance for the change of the function value; the choice TOLF = 0 causes

that the default value 10−8 will be taken.
TOLB RI Minimum acceptable function value; the choice TOLB = 0 causes that the

default value −1060 will be taken.
TOLG RI Tolerance for the gradient of the Lagrangian function; the choice TOLG = 0

causes that the default value 10−6 will be taken.
ETA RI Distance measure parameter γ (ETA=0 is the default value).

The choice of parameters ETA and XMAX is rather delicate. It can considerably influence
the efficiency of the method. Therefore, these parameters should be tuned carefully. Briefly,
the parameter ETA should be smaller (e.g. 10−12 − 10−6) for convex problems and larger (e.g.
10−4 − 102) for nonconvex problems. The parameter XMAX reduces the stepsize so that it plays
an important role in the neighborhood of the kink. The other parameters are not so important,
but small MTESX or MTESF can lead to premature termination of the iterative process.

Subroutines PMINU, PMINS, PMINL require the user supplied subroutines FUN and DER
which define the values and the gradients of the functions in the minimax criterion and have the
form

SUBROUTINE FUN(NF,KA,X,FA)
SUBROUTINE DER(NF,KA,X,GA)

Subroutines PBUNU, PBUNS, PBUNL, PNEWU, PNEWS, PNEWL, PVARU, PVARS, PVARL require
the user supplied subroutine FUNDER which defines the objective function and its subgradient
and has the form

SUBROUTINE FUNDER(NF,X,F,G)

Subroutines PNEWU, PNEWS, PNEWL require the additional user supplied subroutine HES which
defines the matrix of the second-order information (usually the Hessian matrix) and has the
form

SUBROUTINE HES(NF,X,H)

If IHES=0, then the user supplied subroutine HES can be empty.
The arguments of user supplied subroutines have the following meanings:

Argument Type Significance

NF II Number of variables of the objective function.

KA II Index of a function in the minimax criterion.
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X(NF) RI An estimate to the solution.

FA RO Value of a function with the index KA at point X.

GA(NF) RO Gradient of a function with the index KA at point X.

F RO Value of the objective function at point X.

G(NF) RO Subgradient of the objective function at point X.

H(NH) RO Matrix of the second-order information at point X (NH is equal to
NF*(NF+1)/2).

6 Verification of subroutines

In this section we report the results obtained by using test programs TMINU, TMINL, TBUNU,
TBUNL, TNEWU, TNEWL, TVARU, TVARL which serve for demonstration, verification and testing
of subroutines PMINU, PMINL, PBUNU, PBUNL, PNEWU, PNEWL, PVARU, PVARL. These results
are listed in the following tables (rows corresponding to individual test problems contain the
number of iterations NIT, the number of function evaluations NFV, the number of gradient eval-
uations NFG, the final value of the objective function F, the value of the termination criterion
G and the cause of termination ITERM). All computations reported were performed on a Pen-
tium PC computer, under the Windows 2000 system using the Digital Visual Fortran (Version
6) compiler, in double precision arithmetic. All subroutines were checked with a Fortran veri-
fier and also implemented and tested on various UNIX workstations (Digital, Silicon Graphics,
Hewlet Packard).
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Problem NIT NFV NFG F G ITERM

1 7 8 8 1.95222449 0.104E-07 4
2 7 8 8 0.216079417E-09 0.178E-13 4
3 93 180 94 0.250685495E-10 0.651E-06 4
4 13 15 14 3.59971930 0.250E-07 4
5 11 16 12 -44.0000000 0.251E-06 4
6 12 21 13 -44.0000000 0.854E-06 4
7 8 9 9 0.420214268E-02 0.644E-09 4
8 5 6 6 0.508163266E-01 0.150E-06 4
9 10 12 11 0.808436839E-02 0.187E-08 4
10 11 11 11 115.706440 0.708E-08 4
11 35 113 36 0.263597350E-02 0.149E-07 4
12 34 86 35 0.201607548E-02 0.157E-08 4
13 7 8 8 0.996651439E-05 0.453E-06 4
14 6 8 7 0.122371255E-03 0.684E-07 4
15 17 57 17 0.223404960E-01 0.326E-12 4
16 21 53 22 0.349049265E-01 0.252E-07 4
17 11 16 12 0.197290621 0.482E-06 4
18 18 91 19 0.618528478E-02 0.192E-06 4
19 19 45 20 680.630057 0.574E-06 4
20 13 19 14 24.3062091 0.937E-07 4
21 19 30 20 133.728276 0.555E-06 4
22 41 106 41 54.5981500 0.303E-05 -6
23 22 25 23 261.082581 0.315E-06 4
24 18 20 19 0.911538955E-07 0.547E-06 4
25 67 286 68 0.480296951E-01 0.862E-06 4

Σ 525 1249 539 TIME = 0.06

Table 6.1 - Results obtained by program TMINU

Problem NIT NFV NFG F G ITERM

1 6 7 7 -0.389659516 0.613E-08 4
2 5 5 5 -0.330357143 0.222E-15 4
3 8 8 8 -0.448910786 0.203E-10 4
4 75 75 75 -0.429280613 0.445E-10 4
5 9 9 9 -1.85961870 0.830E-12 4
6 7 9 8 0.101830889 0.821E-06 4
7 7 10 8 0.710542736E-14 0.660E-06 4
8 15 23 16 24.3062091 0.350E-06 4
9 23 37 24 133.728276 0.286E-07 4
10 15 16 15 0.506947996 0.149E-10 4
11 38 40 39 0.276078379E-03 0.532E-07 4
12 157 864 158 -1768.80696 0.357E-07 4
13 15 22 16 1227.22608 0.171E-06 4
14 147 270 148 7049.24802 0.103E-06 4
15 65 109 65 174.786994 0.217E-08 4

Σ 592 1504 601 TIME = 0.06

Table 6.2 - Results obtained by program TMINL
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Problem NIT NFV NFG F G ITERM

1 45 48 48 0.198400179E-07 0.325E-03 4
2 29 31 31 0.435801362E-13 0.354E-06 4
3 31 33 33 1.95222452 0.445E-03 2
4 13 15 15 2.00000000 0.192E-06 4
5 17 19 19 -3.00000000 0.974E-10 2
6 13 15 15 7.20000149 0.221E-02 4
7 18 21 21 -1.41421356 0.370E-11 2
8 54 56 56 -0.999999830 0.535E-03 2
9 13 15 15 -1.00000000 0.986E-07 4
10 44 47 47 -7.99999992 0.469E-02 2
11 43 45 45 -43.9999991 0.373E-02 2
12 27 29 29 22.6001621 0.145E-03 4
13 59 61 61 -32.3486789 0.243E-03 2
14 115 116 116 -2.91969280 0.137E-02 2
15 155 156 156 0.559814839 0.123E-02 2
16 74 75 75 -0.841408290 0.729E-03 2
17 146 148 148 9.78593906 0.493E-02 2
18 128 151 151 16.7038653 0.734E-02 2
19 148 149 149 0.167123812E-06 0.781E-04 2
20 39 40 40 0.272746651E-12 0.125E+00 2

Σ 1211 1270 1270 TIME = 0.06

Table 6.3 - Results obtained by program TBUNU

Problem NIT NFV NFG F G ITERM

1 10 11 11 -0.389659516 0.453E-04 4
2 4 5 5 -0.330357143 0.389E-14 4
3 8 10 10 -0.448910786 0.698E-03 4
4 84 85 85 -0.429280614 0.139E-07 2
5 16 17 17 -1.85961382 0.202E-10 2
6 16 17 17 0.101830889 0.343E-06 2
7 54 57 57 0.108743445E-08 0.144E-08 2
8 73 75 75 24.3062154 0.456E-02 4
9 148 151 151 133.728344 0.194E-01 2
10 81 82 82 0.506947996 0.264E-06 2
11 568 733 733 0.604084510E-03 0.687E-02 2
12 231 233 233 -1687.55166 0.456E-01 2
13 128 130 130 1227.22963 0.210E-01 2
14 201 203 203 7051.22733 0.287E-01 2
15 390 393 393 174.791184 0.340E-01 2

Σ 2012 2202 2202 TIME = 0.11

Table 6.4 - Results obtained by program TBUNL
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Problem NIT NFV NFG F G ITERM

1 58 59 59 0.134104250E-18 0.895E-05 2
2 7 8 8 0.167657006E-10 0.579E-05 4
3 15 17 17 1.95222450 0.304E-03 4
4 10 11 11 2.00000682 0.216E-04 4
5 14 15 15 -2.99999999 0.676E-04 4
6 3 5 5 7.20000000 0.000E+00 4
7 16 17 17 -1.41421356 0.565E-07 4
8 11 13 13 -1.00000000 0.416E-07 4
9 10 11 11 -1.00000000 0.456E-06 4
10 24 25 25 -7.99999997 0.322E-02 4
11 13 15 15 -44.0000000 0.421E-05 4
12 7 8 8 22.6001727 0.126E-02 4
13 22 24 24 -32.3486790 0.341E-02 4
14 83 84 84 -2.91970018 0.108E-02 4
15 116 123 123 0.559813085 0.240E-05 4
16 12 14 14 -0.841408335 0.673E-06 4
17 68 72 72 9.78577208 0.107E-03 4
18 40 42 42 16.7038553 0.178E+00 4
19 36 37 37 0.383737024E-08 0.609E-08 2
20 24 25 25 0.452894273E-08 0.100E-07 2

Σ 589 625 625 TIME = 0.05

Table 6.5 - Results obtained by program TNEWU

Problem NIT NFV NFG F G ITERM

1 6 7 7 -0.389659516 0.165E-07 4
2 2 11 11 -0.330357143 0.111E-15 4
3 37 38 38 -0.448910785 0.134E-06 4
4 9 10 10 -0.429280609 0.311E-04 4
5 28 29 29 -1.85961870 0.741E-07 4
6 9 10 10 0.101830889 0.114E-06 4
7 69 70 70 0.813571432E-12 0.737E-05 4
8 15 16 16 24.3062091 0.130E-06 4
9 43 45 45 133.728305 0.409E-03 4
10 94 98 98 0.506947996 0.407E-06 4
11 1148 1192 1192 0.282340278E-03 0.315E-01 2
12 1239 1241 1241 -1768.80243 0.205E-02 2
13 71 80 80 1227.22608 0.635E-02 2
14 54 55 55 7049.24803 0.949E-04 2
15 1382 1385 1385 174.869642 0.322E-01 2

Σ 4206 4287 4287 TIME = 0.41

Table 6.6 - Results obtained by program TNEWL
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Problem NIT NFV NFG F G ITERM

1 56 57 57 0.103091036E-08 0.207E-08 4
2 15 16 16 0.948941202E-10 0.474E-10 4
3 26 26 26 1.95222473 0.779E-06 4
4 17 17 17 2.00000000 0.292E-07 4
5 22 22 22 -2.99999998 0.402E-07 4
6 22 22 22 7.20000067 0.492E-06 4
7 14 14 14 -1.41421356 0.175E-06 4
8 58 63 63 -0.999999928 0.103E-06 4
9 62 62 62 -0.999999852 0.574E-07 4
0 39 39 39 -7.99999983 0.848E-06 4
11 74 75 75 -43.9999976 0.433E-06 4
12 49 49 49 22.6001627 0.241E-06 4
13 52 53 53 -32.3486784 0.100E-05 2
14 32 32 32 -2.91970037 0.341E-06 4
15 114 114 114 0.559818540 0.624E-06 4
16 112 112 112 -0.841396818 0.474E-06 4
17 158 158 158 9.78600636 0.890E-06 4
18 105 105 105 16.7038379 0.446E-06 4
19 128 129 129 0.160715615E-05 0.355E-06 4
20 22 22 22 0.00000000 0.000E+00 4

Σ 1177 1187 1187 TIME = 0.03

Table 6.7 - Results obtained by program TVARU

Problem NIT NFV NFG F G ITERM

1 11 11 11 -0.389659516 0.163E-07 4
2 5 8 8 -0.330357143 0.487E-30 2
3 27 27 27 -0.448910784 0.416E-06 4
4 86 86 86 -0.429280615 0.297E-07 4
5 24 24 24 -1.85961862 0.294E-06 4
6 25 25 25 0.101830939 0.943E-07 4
7 94 94 94 0.526114262E-05 0.777E-06 4
8 159 159 159 24.3064637 0.652E-06 4
9 226 227 227 133.728285 0.174E-05 2
10 144 145 145 0.506950749 0.598E-05 2
11 658 658 658 0.297444605E-03 0.727E-06 4
12 203 212 212 -1768.57476 0.210E-04 2
13 451 448 448 1227.28556 0.143E-04 2
14 294 479 479 7049.25599 0.217E-03 2
15 181 180 180 174.787082 0.374E-03 2

Σ 2588 2783 2783 TIME = 0.06

Table 6.8 - Results obtained by program TVARL

Computational comparisons of subroutines PBUNU, PNEWU, PVARU with other algorithms de-
scribed in literature can be found in [12], [13] and [21].
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